13.9 C
Jammu
Monday, November 25, 2024
HomeTop HeadlinesEarth-sun distance dramatically alters seasons in the equatorial Pacific in a 22,000-year...

Earth-sun distance dramatically alters seasons in the equatorial Pacific in a 22,000-year cycle

Date:

Related stories

Prez Droupadi Murmu to visit Siachen Base Camp tomorrow, interact with troops

Sunil Kumar Leh: President Droupadi Murmu will visit the Siachen...

CEC Gyalson launches Mahindra Thar ROXX MX5 in Leh

Leh, Sept 20: In a significant push for local...

Mega Camp held in village Tangole as part of Rashtriya Poshan Maah Campaign

Kargil, Sept 20: In a significant push towards improving...
spot_imgspot_img

Weather and climate modelers understand pretty well how seasonal winds and ocean currents affect El Niño patterns in the eastern equatorial Pacific Ocean, impacting weather across the United States and sometimes worldwide.

But new computer simulations show that one driver of annual weather cycles in that region—in particular, a cold tongue of surface waters stretching westward along the equator from the coast of South America—has gone unrecognized: the changing  between Earth and the sun.

The cold tongue, in turn, influences the El Niño-Southern Oscillation (ENSO), which impacts weather in California, much of North America, and often globally.

The Earth-sun distance slowly varies over the course of the year because Earth’s orbit is slightly elliptical. Currently, at its —perihelion—Earth is about 3 million miles closer to the sun than at its farthest point, or aphelion. As a result, sunlight is about 7% more intense at perihelion than at aphelion.

Research led by the University of California, Berkeley, demonstrates that the slight yearly change in our distance from the sun can have a large effect on the annual cycle of the cold tongue. This is distinct from the effect of Earth’s  on the seasons, which is currently understood to cause the annual cycle of the cold tongue.

Because the period of the annual cycle arising from the tilt and distance effects are slightly different, their combined effects vary over time, said lead researcher John Chiang, UC Berkeley professor of geography.

“The curious thing is that the annual cycle from the distance effect is slightly longer than that for tilt—around 25 minutes, currently—so over a span of about 11,000 years, the two annual cycles go from being in phase to out of phase, and the net seasonality undergoes a remarkable change, as a result,” Chiang said.

Chiang noted that the distance effect is already incorporated into climate models—though its effect on the equatorial Pacific was not recognized until now—and his findings will not alter weather predictions or climate projections. But the 22,000-year phase cycle may have had long-term, historical effects. Earth’s orbital precession is known to have affected the timing of the ice ages, for example.

Share this

Subscribe

- Never miss a story with notifications

- Gain full access to our premium content

- Browse free from up to 5 devices at once

Latest stories

spot_img

LEAVE A REPLY

Please enter your comment!
Please enter your name here