15.9 C
Jammu
Sunday, November 24, 2024
HomeTop HeadlinesAI helps researchers design microneedle patches that restore hair in balding mice

AI helps researchers design microneedle patches that restore hair in balding mice

Date:

Related stories

Prez Droupadi Murmu to visit Siachen Base Camp tomorrow, interact with troops

Sunil Kumar Leh: President Droupadi Murmu will visit the Siachen...

CEC Gyalson launches Mahindra Thar ROXX MX5 in Leh

Leh, Sept 20: In a significant push for local...

Mega Camp held in village Tangole as part of Rashtriya Poshan Maah Campaign

Kargil, Sept 20: In a significant push towards improving...
spot_imgspot_img

Hair loss is undesirable for many men—and women—because one’s hairstyle is often closely tied to their self-confidence. And while some people embrace it, others wish they could regrow their lost strands. Now, researchers reporting in Nano Letters have used artificial intelligence (AI) to predict compounds that could neutralize baldness-causing reactive oxygen species in the scalp. Using the best candidate, they constructed a proof-of-concept microneedle patch and effectively regenerated hair on mice.

Most people with substantial hair loss have the condition androgenic alopecia, also called male- or female-pattern baldness. In this condition, hair follicles can be damaged by androgens, inflammation or an overabundance of , such as oxygen free radicals.

When the levels of oxygen free radicals are too high, they can overwhelm the body’s antioxidant enzymes that typically keep them in check. Superoxide dismutase (SOD) is one of these enzymes, and researchers have recently created SOD mimics called “nanozymes.” But so far, those that have been reported aren’t very good at removing oxygen . So, Lina Wang, Zhiling Zhu and colleagues wanted to see whether , a form of AI, could help them design a better nanozyme for treating .

The researchers chose transition-metal thiophosphate compounds as potential nanozyme candidates. They tested  with 91 different transition-metal, phosphate and sulfate combinations, and the techniques predicted that MnPS3 would have the most powerful SOD-like ability.

Next, MnPSnanosheets were synthesized through chemical vapor transport of manganese, red phosphorus and sulfur powders. In initial tests with human skin fibroblast cells, the nanosheets significantly reduced the levels of reactive oxygen species without causing harm.

Based on these results, the team prepared MnPS3 microneedle patches and treated androgenic alopecia-affected mouse models with them. Within 13 days, the animals regenerated thicker hair strands that more densely covered their previously bald backsides than mice treated with testosterone or minoxidil. The researchers say that their study both produced a nanozyme treatment for regenerating hair, and indicated the potential for computer-based methods for use in the design of future nanozyme therapeutics.

Share this

Subscribe

- Never miss a story with notifications

- Gain full access to our premium content

- Browse free from up to 5 devices at once

Latest stories

spot_img

LEAVE A REPLY

Please enter your comment!
Please enter your name here